
An algorithm of fragmentation optimization in distributed database

Igor Zhukov1, Ivan Kravets2

1 Professor, director of the institute of computer technologies, National Aviation University, Kosmonavta Komarova ave. 1, Kiev,

03058, UKRAINE, E-mail: zhukov@nau.edu.ua
2 PhD student of department "Computer systems and networks", National Aviation University, Kosmonavta Komarova ave. 1,

Kiev, 03058, UKRAINE, E-mail: me@ikravets.com

Developed a method of fragmenting large-size data based on

analysis of requests to the database management system; algorithm

of search of the shortest path for given vertices in multigraph. Prov-

en that this algorithm allows to distribute data between databases

more efficiently, and also to reduce time of executing requests.

Keywords – distributed database, fragmentation algorithm, or-

graph, multigraph, weighted vertices.

I. Introduction

Recently more and more IT specialists are running into is-

sues related to slow work of their databases. Some are resort-

ing to hardware upgrades of the server which hosts database

management system, and some are building huge cluster sys-

tems hoping that load balancing will solve all the problems.

But question about fragmentation becomes more interesting

in cases when majority of RDBMS requests are (to some ex-

tent) remain the same while DB size grows exponentially. It

might have practical applications for BDs in medical care,

educational institutions, libraries and other organizations,

where 90% of the data is of archive nature [1].

Goal of this article is to describe of the new algorithm of op-

timization of data fragmentation in distributed database

(DDB).

II. Algorithm of optimization of data fragmenta-

tion

As of now, majority of specialists are designing BD and

creating requests based on the data of small size, or fragment-

ing BD into different parts and don't think that ratios of data

grows can be different from initial prognosis. With time, it can

affect time of request execution in RDBMS.

Time of request execution can be written as Eq. (1)

,)

1

(con

b

bi

V

V

c

n

i
o

ii

 (1)

where n – number of tables in request; o, i – time to open i-

th table; c, i – time to close i-th table; b – time to read data

block; con – total time to connect; Vi – volume of i-th table; Vb

– volume of the block.

To find the shortest path of joining tables in DDB let us

consider SQL-request in the form of orgraph G:=(V,A), where

V is a set of vertices which represents DB tables, and A – set

of pairs of different vertices (edges) based on joining condi-

tions of two tables.

As the next step it is necessary to build connected multi-

graph. For every it's vertice we will assign weight ci – time to

access and reading the table, every edge we will assign

weight di – time to joining related tables (including total time

to connect to different DDB). This way, to choose optimal

path it is necessary to perform optimization for graph

with weighted vertices and edges.

Task of graph optimization consists of choosing of

the least weighted sub-graph under condition that

resulting sub-graph is connected one:

min,*]

11

[)(

 iii x
m

j

d
n

i

cGf (2)

where ,
b

bi
i

V

V

co
c

ii

 ci – weight of i-

th vertice; n – number of vertices; m – number of

edges; di – weight of j-th edge; xi=1, if i-th vertice (ta-

ble) can be fragmented, and 0 otherwise.

Based on resulting minimal path it is necessary to

perform fragmentation of appropriate tables.

III. Example of using algorithm of optimiza-

tion of data fragmentation

For analysis it was taken a request which joins five

tables from three RDBs:

SELECT STRAIGHT_JOIN

w.worker_firstname,

 w.worker_lastname,

wd.workday_date,

wju.jobauit_start,

wju.jobauit_end,

 jc.jobclass_name,

wdwr.workday_wagerate

FROM

(workers w, workdays wd)

LEFT OUTER JOIN worker_jobaudit wju ON

(wju.worker_id = w.worker_id AND wju.jobdate =

wd.workday_date)

LEFT OUTER JOIN jobclasses jc ON (jc.jobclass_id

= wju.jobclass_id)

LEFT OUTER JOIN workday_wagerates wdwr ON

(wdwr.workday_id = wd.workday_id)

WHERE

w.worker_spared = 0 AND wd.workdate >

DATE_SUB(CURDATE(),INTERVAL 31 DAY)

ORDER BY

wd.workday_date.

From SQL-request we see that request was written as

if all the data are located within the same DB. It is

achieved due to transparent fragmentation and proper-

ties of RDB [2]. Presenting this request as graph [3],

and after performing conversion from tables into ver-

tices, orgraph shown on Fig. 1 was obtained.

Fig. 1 Orgraph based from request to RDBMS

Then connected multigraph with weighted vertices and

edges was built (Fig. 2). It is an abstract representation of

orgraph on Fig. 1 based on 3 RBDs. It schematically shows :

 DB1-DB3 – is distributed database for N=3 servers;

 c1-c15 – weight for vertices;

 d1-d35 – weight for edges;

 c1-c7-c13-c9-c15 – initial path with previous state of frag-

mented data;

 c1-c7-c8-c9-c10 – optimized path.

Calculated values of weights on vertices ci based on Eq. 1

are shown in Table I. And weights on edges d j include into

them: time to connect related tables, delay between servers at

network level and time of RDB authorization (Table II).

TABLE 1

WEIGHT FOR VERTICES

i 1 2 3 4 5 6 7 8

ci, msec 5 - 2 - 1 - 32 13

i 9 10 11 12 13 14 15

ci, msec 11 14 - - 2 - 2

TABLE 2

WEIGHT FOR EDGES

j 1 2 3 4 5 6 7 8 9

dj, msec - - - - - 7 4 3 -

j 10 11 12 13 14 15 16 17 18

dj, msec - - - - 196 - - - 158

j 19 20 21 22 23 24 25 26 27

dj, msec - - - - 107 111 - - 114

j 28 29 30 31 32 33 34 35

dj, msec 131 - - - - 149 - -

It should be mentioned, that when fragmeting DB, it

is not always possible to perform manipulation with all

tuples from tables for the benefit of one or another

database server. But this case is possible when frag-

mentation is done for the first time.

Then tuples of data from tables will be fragmented in

such way, to put orgraph (Fig. 1) into the limits of the

same BD. It will allow to avoid joining tables from dif-

ferent physical servers, which will indirectly reduce

time of request execution.

The same way in this case: after analysing statistical

data, which were gathered based on “evolutional algo-

rithm” [4-13], it was allowed to fragment only the fol-

lowing tables: worker_jobaudit (c3, c8, c13) and work-

day_wagerates (c5, c10, c15).

Therefore, in Tables I and II weights on vertices and

edges was set to "-", because paths which lead

through them are impossible.

The final list of alternative paths is shown in Table 3,

their number is nine and all of the traverse exactly five

vertices, because request (Fig. 1) consists of joining of

5 tables.

TABLE 3

ALTERNATIVE PATHS

Path Time, msec

1 1,7,3,9,5 530

2 1,7,3,9,10 432

3 1,7,3,9,15 548

4 1,7,8,9,5 383

5 1,7,8,9,10 285

6 1,7,8,9,15 401

7 1,7,13,9,5 617

8 1,7,13,9,10 519

9 1,7,13,9,15 635

The path #5 is optimized and have a minimal time for

query execution. The initial path #9 – have 625msec.

This is in more then 2 times.

Conclusion

Developed a method of fragmenting large-size data

based on analysis of requests to the database man-

agement system; algorithm of search of the shortest

path for given vertices in multigraph.

Proven that this algorithm allows to distribute data

between databases more efficiently, and also to reduce

time of executing requests.

Thereafter, this method Eq. (2) can be extended by a

detailed study of indicators of load edges. It can be

taken into account: the amount of data transferred be-

tween the two RDB of network protocols, performance

of physical servers.

Fig. 2 Multigraph with weight for vertices and edges

References

[1] I.A. Zhukov, I.M. Kravets, “Distribution load database

in the information-analytical system”, The Problems of

information and , vol. 4(22),Kyiv,NAU,pp.56-61, 2007.

[2] I.A. Zhukov, I.M. Kravets, “Organization of distribu-

tion load database in the analysis and information

system”, International scientific technical confe-

rence “DESSERT-2009”, Radioelectronic and com-

puter system, vol. 5(39),Kharkiv,KhAI,pp. 25-30, 2009.

[3] M. N. Kyrsanov. “Graphs in Maple. Tasks, algorithms,

programs”, Fizmatlit, Moscov, pp 29-39, 2007.

[4] Bäck, T., Fogel, D.B., Michalewicz, Z. (Editors), “Hand-

book of Evolutionary Computation”, Institute of Phys-

ics Publishing, Bristol and Oxford University Press,

New York, pp. 113-132, 2006.

 [5] Bäck, T., “Optimal mutation rates in genetic search”,

Proceedings of the 5th International Conference On

Genetic Algorithms, Ed. S. Forrest, Morgan Kaufmann,

San Mateo, CA, pp. 2-8, 2001.

[6] Dumitrescu, D., Lazzerini, B., Jain, L.C, Dumitrescu, A.,

“Evolutionary Computation”, CRC Press, Boca Raton,

FL. pp. 47-52. 2000.

[7] Goldberg, D.E., Deb, K., “A comparative analysis of

selection schemes used in genetic algorithms”, Foun-

dations of Genetic Algorithms G.J.E. Rawlins (Ed.) ,

Morgan Kaufmann, San Mateo, CA, pp. 69-93, 2001.

[8] Moldovan, G., “Reorganization of a Distributed Data-

base”, Babes-Bolyai University, Seminar of Models,

Structures and Information Processing , Preprint nr. 5,

pp. 3-10, 2007.

[9] Mitchell, M., “An Introduction to Genetic Algorithms”,

MIT Press, Cambridge, MA, 1996.

[10] Oszu, M. T., Valduriez, P., “Principles of Distributed

Database Systems”, Prentice Hall, Englewood Cli.s,

NJ, p. 13, 2005.

[11] Makinouchi A., Tezuka M., Kitakami H., Adachi S.

“The optimization Strategy for Query Evaluation in

RDB/V1” , Proc. 7th Int. Conf. Very Large Data Bases,

Cannes, France, pp. 518-529, Sept. 3-11, 2004.

[12] Piattini, M. and Diaz, O., “Advanced Database Tech-

nology and Design”, Artech House, Inc. 685 Canton

Street Norwood, MA 02062, 2000.

[13] Weiss, G., “Multiagent System, A Modern Approach

to Distributed Artifical Intelligence”, MIT Press , USA,

2000.

